metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

{(1*R*,2*R*)-*N*,*N*'-Bis[2-(*N*-methylanilino)benzylidene]cyclohexane-1,2diamine- $\kappa^2 N, N'$ dichloridoiron(II)

Yanyu Zhang, Qiaolin Wu* and Ying Mu*

State Key Laboratory of Supramolecular Structure and Materials, School of Chemistry, Jilin University, Changchun 130012, People's Republic of China Correspondence e-mail: wugl@jlu.edu.cn, ymu@jlu.edu.cn

Received 9 December 2011; accepted 14 December 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.037; wR factor = 0.093; data-to-parameter ratio = 21.8.

In the title compound, $[FeCl_2(C_{34}H_{36}N_4)],$ the $Fe^{\rm II}$ ion is coordinated by two Cl atoms and by two N atoms from a (1R,2R)-N,N'-bis[2-(N-methylanilino)benzylidene]cyclohexane-1,2-diamine ligand in a distorted tetrahedral geometry. The molecule has approximate C_2 point symmetry. The dihedral angles between the phenyl and benzene rings on either side of the ligand are 64.56 (14) and 65.61 (13)°.

Related literature

For background to chiral diimine-based catalysts, see: Li et al. (1993). For the application of iron complexes in enantioselective oxidation, see: Muthupandi et al. (2009). For related structures, see: Yan et al. (2009); Chaggar et al. (2003); Sui-Seng et al. (2008, 2009).

Experimental

Crystal data

```
[FeCl<sub>2</sub>(C<sub>34</sub>H<sub>36</sub>N<sub>4</sub>)]
M_r = 627.42
Orthorhombic, P2_12_12_1
a = 13.040 (3) Å
b = 13,228 (3) Å
c = 20.602 (4) Å
```

Data collection

```
Rigaku R-AXIS RAPID
                                           33683 measured reflections
  diffractometer
                                           8057 independent reflections
Absorption correction: multi-scan
                                           6495 reflections with I > 2\sigma(I)
  (ABSCOR; Rigaku, 1995)
                                           R_{\rm int} = 0.043
  T_{\min} = 0.866, T_{\max} = 0.897
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters constrained
$wR(F^2) = 0.093$	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
S = 1.03	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$
8057 reflections	Absolute structure: Flack (1983),
370 parameters	3578 Friedel pairs
1 restraint	Flack parameter: 0.010 (12)

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

 $V = 3553.6 (12) \text{ Å}^3$

Mo Ka radiation

 $0.24 \times 0.21 \times 0.18 \; \rm mm$

 $\mu = 0.60 \text{ mm}^-$

T = 298 K

Z = 4

We thank the National Natural Science Foundation of China (grant Nos. 21074043 and 21004026).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5395).

References

- Chaggar, R. K., Fawcett, J. & Solan, G. A. (2003). Acta Cryst. E59, m462-m463. Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Li, Z., Conser, K. R. & Jacobsen, E. N. (1993). J. Am. Chem. Soc. 115, 5326-5327
- Muthupandi, P., Alamsetti, S. K. & Sekar, G. (2009). Chem. Commun. pp. 3288-3290.
- Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sui-Seng, C., Freutel, F., Lough, A. J. & Morris, R. H. (2008). Angew. Chem. Int. Ed. 47, 940-943.
- Sui-Seng, C., Haque, F. N., Hadzovic, A., Puetz, A. M., Reuss, V., Meyer, N., Lough, A. J., Iuliis, M. Z. D. & Morris, R. H. (2009). Inorg. Chem. 48, 735-743
- Yan, P.-F., Bao, Y., Li, H.-F. & Li, G.-M. (2009). Acta Cryst. E65, m832.

Acta Cryst. (2012). E68, m64 [doi:10.1107/S1600536811053773]

{(1*R*,2*R*)-*N*,*N*'-Bis[2-(*N*-methylanilino)benzylidene]cyclohexane-1,2-diamine- $\kappa^2 N$,*N*'}dichloridoiron(II)

Y. Zhang, Q. Wu and Y. Mu

Comment

Asymmetric alkene aziridination with readily available chiral diimine-based catalysts has been studied (Li, *et al.*, 1993). Salen iron complexes were successfully applied in enantioselective oxidation of racemic benzoins (Muthupandi, *et al.* 2009), and iron(II) complexes with tetradentate *PNNP* ligands have been used as catalysts in the asymmetric hydrogenation of acetophenone (Sui-Seng,*et al.* 2008, 2009). Herein we report a novel chiral iron(II) complex and its molecular structure is shown in Fig. 1.

The title complex (I) possesses approximate C_2 point symmetry with the Fe^{II} ion coordinated in a distorted tetrahedral geometry by two Cl atoms and by two N atoms from the imine groups of the (1*R*,2*R*)-*N*, *N*-bis[*ortho-* (*N*-methylphenylamino)-benzylidene]-1,2- diaminocyclohexane ligand. The dihedral angles between the phenyl and benzene rings on either side of the ligand are 64.56 (14)° (C8-C13/C14-C19) and 65.61 (13)° (C22-C27C28-C33). The geometric parameters of (I) can be compared to related complexes (Bao *et al.* (2009); Chaggar *et al.* (2003).

Experimental

[(1R,2R)-N,N'-Bis[2-fluorobenzylidene) cyclohexane-1,2-diamine] {L} was prepared according to reported procedure (Li *et al.*, 1993). (1R,2R)-N,N'-Bis[ortho-(N-methylphenylamino)- benzylidene]- 1,2-diaminocyclohexane was synthesized according to the following method: A solution of nBuLi (2 mol/L in hexane, 30.0 ml, 60.0 mmol) was added to a solution of N-methylaniline (6.50 ml, 60.0 mmol) in THF (60 ml) at 195K. The mixture was allowed to warm to room temperature and stirred for 6 h. The resulting solution was transferred into a solution of {L} (9.79 g, 30.0 mmol) in THF (60 ml) at 293K. After stirring for 48 h, the reaction was quenched with H₂O (20 ml). The organic phase was evaporated to dryness *in vacuo* to give the crude product as a yellow solid. Pure product was obtained by recrystallization from THF as yellow crystals (11.2 g, 75%) Anal. Calcd for C₃₄H₃₆N₄ (500.29): C 81.56, H 7.25, N 11.19; Found: C 81.46, H 7.29, N 11.22%.

The title compound was synthesized according to the following method: $FeCl_2$ (127 mg, 1 mmol) was added to a stirred MeCN solution of the ligand (500 mg, 1 mmol) at room temperature. The resulting mixture was stirred for 12 h. The product precipitated as an brown powder and was isolated by filtration (395 mg, 63%). Crystals suitable for X-ray diffraction studies were obtained from a MeCN/Et₂O solution. Anal. Calcd for C₃₄H₃₆Cl₂N₄Fe (627.43): C 65.09, H 5.78, N 8.93; Found: C 65.14, H 5.69, N 8.90%.

Refinement

The C-bound H atoms were positioned geometrically with C—H = 0.93 (aromatic and imine carbon), 0.97 (methylene) and 0.96 (methyl) Å, and allowed to ride on their parent atoms in the riding model approximation with $U_{iso}(H) = 1.2$ (1.5 for methyl) $U_{eq}(C)$.

Figures

Fig. 1. View of the molecule of (I) showing displacement ellipsoids are drawn at the 30% probability level. The hydrogen atoms are omitted for clarity.

 $D_{\rm x} = 1.173 \ {\rm Mg \ m^{-3}}$

 $\theta = 3.1 - 27.5^{\circ}$

 $\mu = 0.60 \text{ mm}^{-1}$ T = 298 K

Block, brown

 $0.24 \times 0.21 \times 0.18 \text{ mm}$

Melting point: not measured K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 26371 reflections

(I)

Crystal data

C34H36Cl2FeN4 $M_r = 627.42$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 13.040(3) Å *b* = 13.228 (3) Å c = 20.602 (4) Å $V = 3553.6 (12) \text{ Å}^3$ Z = 4F(000) = 1312

D

Data collection	
Rigaku RAXIS-RAPID diffractometer	8057 independent reflections
Radiation source: fine-focus sealed tube	6495 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.043$
Detector resolution: 0 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}, \theta_{\text{min}} = 3.1^{\circ}$
ω scans	$h = -16 \rightarrow 14$
Absorption correction: multi-scan ABSCOR, Rigaku (1995).	$k = -17 \rightarrow 16$
$T_{\min} = 0.866, T_{\max} = 0.897$	$l = -26 \rightarrow 26$

33683 measured reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters constrained
$wR(F^2) = 0.093$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0508P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} = 0.001$
8057 reflections	$\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$

370 parameters

 $\Delta \rho_{min} = -0.18 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983) 3578 Friedel pairs

1 restraintAbsolute structure: Flack (1Primary atom site location: structure-invariant direct
methodsFlack parameter: 0.010 (12)

Special details

Experimental. ¹H NMR (300 MHz, CDCl₃, 298 K) δ (p.p.m.): 8.27 (s, 2H, C*H*=N), 7.89 (d, 2H, J = 9.0 Hz, Ar*H*), 7.37 (t, 2H, J = 9.0 Hz, Ar*H*), 7.21–7.06 (m, 10H, Ar*H*), 6.74 (t, 2H, J = 9.0 Hz), 6.56 (d, J = 9.0 Hz, 2H), 3.27 (m, 2H, NC*H*CH₂), 1.03 (s, 6H, NC*H*₃), 1.75–1.37 (m, 8H,*CH*₂).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Fe1	0.56631 (2)	0.42985 (2)	0.460486 (15)	0.04245 (9)
C11	0.67993 (5)	0.48063 (5)	0.53572 (3)	0.06293 (17)
Cl2	0.46852 (6)	0.54282 (5)	0.40817 (3)	0.06693 (18)
N1	0.47736 (13)	0.30362 (14)	0.49010 (8)	0.0402 (4)
N2	0.63149 (13)	0.31650 (13)	0.40093 (8)	0.0394 (4)
N3	0.45490 (16)	0.25188 (18)	0.67965 (10)	0.0584 (5)
N4	0.67088 (15)	0.36560 (17)	0.21363 (10)	0.0566 (5)
C1	0.48832 (16)	0.21737 (16)	0.44434 (10)	0.0394 (5)
H1	0.4472	0.2329	0.4058	0.090*
C2	0.60131 (15)	0.21292 (15)	0.42297 (10)	0.0374 (4)
H2	0.6419	0.1980	0.4619	0.090*
C3	0.62008 (19)	0.12705 (19)	0.37537 (12)	0.0506 (6)
H3A	0.6927	0.1233	0.3653	0.090*
H3B	0.5833	0.1404	0.3353	0.090*
C4	0.5846 (2)	0.02654 (18)	0.40358 (13)	0.0597 (6)
H4A	0.5955	-0.0267	0.3720	0.090*
H4B	0.6248	0.0108	0.4419	0.090*
C5	0.4727 (2)	0.0309 (2)	0.42142 (13)	0.0638 (7)
H5A	0.4519	-0.0333	0.4400	0.090*
H5B	0.4321	0.0424	0.3827	0.090*
C6	0.45287 (17)	0.11521 (17)	0.47001 (12)	0.0518 (5)
H6A	0.4887	0.1003	0.5101	0.090*
H6B	0.3801	0.1183	0.4795	0.090*
C7	0.43205 (15)	0.29153 (16)	0.54426 (10)	0.0430 (4)
H7	0.4067	0.2276	0.5540	0.090*

C8	0.41725 (16)	0.37204 (19)	0.59235 (11)	0.0490 (5)
C9	0.42638 (18)	0.3503 (2)	0.65930 (11)	0.0530 (5)
C10	0.4029 (2)	0.4271 (3)	0.70306 (13)	0.0722 (8)
H10	0.4077	0.4143	0.7473	0.090*
C11	0.3730 (3)	0.5202 (3)	0.68277 (17)	0.0858 (10)
H11	0.3569	0.5695	0.7133	0.090*
C12	0.3661 (2)	0.5428 (2)	0.61802 (17)	0.0752 (8)
H12	0.3463	0.6069	0.6045	0.090*
C13	0.3893 (2)	0.4683 (2)	0.57297 (13)	0.0613 (7)
H13	0.3860	0.4834	0.5289	0.090*
C14	0.54177 (18)	0.2032 (2)	0.65208 (11)	0.0534 (6)
C15	0.62253 (18)	0.2577 (2)	0.62606 (12)	0.0556 (6)
H15	0.6210	0.3280	0.6266	0.090*
C16	0.7052 (2)	0.2078 (3)	0.59926 (15)	0.0754 (9)
H16	0.7585	0.2449	0.5810	0.090*
C17	0.7097 (3)	0.1044 (4)	0.59921 (17)	0.0973 (12)
H17	0.7665	0.0717	0.5818	0.090*
C18	0.6305 (4)	0.0490 (3)	0.62469 (18)	0.0957 (12)
H18	0.6334	-0.0212	0.6241	0.090*
C19	0.5460 (3)	0.0972 (2)	0.65142 (15)	0.0754 (8)
H19	0.4924	0.0595	0.6688	0.090*
C20	0.4310 (2)	0.2244 (3)	0.74653 (14)	0.0802 (9)
H20A	0.4540	0.1567	0.7548	0.090*
H20B	0.3582	0.2283	0.7532	0.090*
H20C	0.4650	0.2702	0.7756	0.090*
C21	0.67820 (17)	0.32672 (17)	0.34710 (10)	0.0428 (5)
H21	0.6876	0.2690	0.3220	0.090*
C22	0.71833 (16)	0.42188 (18)	0.32147 (11)	0.0449 (5)
C23	0.72020 (16)	0.43670 (19)	0.25358 (11)	0.0480 (5)
C24	0.77257 (19)	0.5197 (2)	0.22871 (13)	0.0561 (6)
H24	0.7750	0.5299	0.1841	0.090*
C25	0.82048 (19)	0.5866 (2)	0.26927 (15)	0.0632 (7)
H25	0.8567	0.6405	0.2516	0.090*
C26	0.81626 (18)	0.5757 (2)	0.33613 (14)	0.0595 (6)
H26	0.8470	0.6231	0.3632	0.090*
C27	0.76565 (18)	0.4933 (2)	0.36163 (12)	0.0526 (6)
H27	0.7629	0.4851	0.4064	0.090*
C28	0.56550 (18)	0.34379 (18)	0.22359 (10)	0.0486 (5)
C29	0.5025 (2)	0.4097 (2)	0.25693 (13)	0.0566 (6)
H29	0.5288	0.4705	0.2724	0.090*
C30	0.3998 (2)	0.3856 (3)	0.26745 (15)	0.0700 (8)
H30	0.3583	0.4297	0.2909	0.090*
C31	0.3597 (2)	0.2980 (3)	0.24368 (17)	0.0771 (9)
H31	0.2909	0.2826	0.2502	0.090*
C32	0.4222 (3)	0.2325 (3)	0.20982 (18)	0.0840 (9)
H32	0.3950	0.1726	0.1936	0.090*
C33	0.5235 (2)	0.2540 (2)	0.19977 (16)	0.0716 (8)
H33	0.5646	0.2088	0.1770	0.090*
C34	0.7164 (2)	0.3395 (2)	0.15165 (12)	0.0630 (7)

H34A	0.6741	0.2906	0.1300	0.090*
H34B	0.7835	0.3115	0.1586	0.090*
H34C	0.7219	0.3990	0.1253	0.090*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.04618 (16)	0.04382 (15)	0.03736 (16)	-0.00461 (14)	0.00017 (14)	-0.00167 (13)
Cl1	0.0632 (3)	0.0743 (4)	0.0513 (3)	-0.0149 (3)	-0.0097 (3)	-0.0089 (3)
Cl2	0.0795 (4)	0.0616 (4)	0.0597 (4)	0.0074 (3)	-0.0054 (3)	0.0132 (3)
N1	0.0368 (8)	0.0509 (9)	0.0329 (9)	-0.0012 (8)	-0.0005 (7)	-0.0017 (7)
N2	0.0381 (9)	0.0468 (9)	0.0332 (9)	-0.0033 (8)	0.0024 (7)	0.0020 (8)
N3	0.0528 (12)	0.0846 (12)	0.0379 (10)	-0.0104 (11)	0.0079 (9)	0.0083 (10)
N4	0.0578 (11)	0.0741 (13)	0.0378 (10)	-0.0103 (11)	0.0137 (9)	-0.0027 (10)
C1	0.0380 (10)	0.0486 (11)	0.0316 (11)	-0.0053 (9)	-0.0035 (8)	-0.0027 (8)
C2	0.0372 (10)	0.0438 (11)	0.0311 (11)	-0.0044 (9)	-0.0003 (8)	0.0032 (8)
C3	0.0572 (14)	0.0499 (13)	0.0448 (13)	0.0004 (11)	0.0026 (11)	-0.0015 (10)
C4	0.0765 (18)	0.0461 (12)	0.0565 (14)	-0.0036 (13)	0.0015 (13)	-0.0069 (11)
C5	0.0762 (17)	0.0527 (13)	0.0625 (17)	-0.0221 (13)	0.0004 (13)	-0.0053 (12)
C6	0.0529 (13)	0.0542 (12)	0.0482 (13)	-0.0153 (11)	0.0038 (11)	0.0003 (10)
C7	0.0361 (9)	0.0568 (11)	0.0361 (11)	-0.0058 (10)	0.0008 (10)	0.0039 (9)
C8	0.0379 (11)	0.0658 (14)	0.0432 (12)	0.0008 (11)	0.0059 (10)	-0.0051 (11)
C9	0.0391 (11)	0.0815 (13)	0.0385 (12)	-0.0058 (12)	0.0052 (10)	-0.0067 (11)
C10	0.0643 (16)	0.109 (2)	0.0431 (14)	-0.0046 (18)	0.0051 (11)	-0.0205 (16)
C11	0.077 (2)	0.106 (3)	0.074 (2)	0.020 (2)	0.0004 (16)	-0.043 (2)
C12	0.0716 (18)	0.0737 (19)	0.080(2)	0.0170 (15)	-0.0006 (15)	-0.0148 (16)
C13	0.0557 (14)	0.0734 (16)	0.0549 (15)	0.0050 (13)	0.0040 (12)	-0.0078 (13)
C14	0.0522 (13)	0.0743 (15)	0.0335 (12)	-0.0071 (13)	-0.0066 (10)	0.0073 (11)
C15	0.0426 (12)	0.0819 (17)	0.0422 (13)	-0.0105 (12)	-0.0049 (10)	0.0031 (12)
C16	0.0499 (15)	0.122 (3)	0.0544 (17)	0.0069 (18)	-0.0055 (13)	0.0040 (18)
C17	0.093 (2)	0.143 (4)	0.0558 (19)	0.050 (3)	-0.0125 (18)	0.003 (2)
C18	0.132 (3)	0.089 (2)	0.067 (2)	0.035 (2)	-0.018 (2)	0.0068 (18)
C19	0.100 (2)	0.0679 (17)	0.0582 (17)	-0.0066 (17)	-0.0133 (16)	0.0156 (13)
C20	0.0707 (17)	0.124 (3)	0.0462 (15)	-0.0200 (19)	0.0112 (14)	0.0218 (16)
C21	0.0436 (11)	0.0499 (11)	0.0348 (11)	-0.0003 (10)	0.0023 (9)	0.0023 (9)
C22	0.0402 (11)	0.0511 (12)	0.0432 (12)	-0.0032 (11)	0.0079 (9)	0.0032 (11)
C23	0.0410 (10)	0.0596 (13)	0.0434 (12)	0.0028 (11)	0.0097 (9)	0.0013 (11)
C24	0.0546 (13)	0.0602 (15)	0.0535 (15)	-0.0043 (12)	0.0110 (11)	0.0140 (12)
C25	0.0465 (12)	0.0663 (16)	0.0767 (19)	-0.0040 (13)	0.0122 (12)	0.0160 (14)
C26	0.0462 (12)	0.0576 (13)	0.0748 (18)	-0.0101 (13)	0.0001 (12)	-0.0028 (14)
C27	0.0442 (12)	0.0638 (14)	0.0499 (14)	-0.0023 (11)	0.0044 (10)	0.0017 (12)
C28	0.0535 (12)	0.0562 (12)	0.0360 (11)	-0.0035 (12)	0.0073 (10)	-0.0001 (9)
C29	0.0557 (13)	0.0644 (15)	0.0495 (14)	-0.0069 (12)	0.0031 (11)	-0.0041 (12)
C30	0.0477 (13)	0.094 (2)	0.0688 (19)	-0.0002 (15)	0.0054 (13)	-0.0116 (16)
C31	0.0597 (16)	0.092 (2)	0.079 (2)	-0.0274 (16)	0.0053 (15)	-0.0091 (18)
C32	0.075 (2)	0.084 (2)	0.093 (2)	-0.0273 (18)	0.0032 (19)	-0.0236 (18)
C33	0.0713 (18)	0.0674 (16)	0.076 (2)	-0.0087 (15)	0.0074 (15)	-0.0168 (15)
C34	0.0601 (14)	0.0901 (19)	0.0388 (13)	0.0146 (15)	0.0097 (11)	0.0029 (13)

Geometric parameters (Å, °)

Fe1—N2	2.1157 (18)	С13—Н13	0.9300
Fe1—N1	2.1227 (18)	C14—C15	1.384 (4)
Fe1—Cl2	2.2408 (8)	C14—C19	1.403 (4)
Fe1—Cl1	2.2468 (7)	C15—C16	1.379 (4)
N1—C7	1.273 (3)	C15—H15	0.9300
N1—C1	1.487 (3)	C16—C17	1.369 (6)
N2—C21	1.272 (3)	C16—H16	0.9300
N2—C2	1.496 (3)	C17—C18	1.370 (6)
N3—C9	1.417 (3)	C17—H17	0.9300
N3—C14	1.422 (3)	C18—C19	1.387 (5)
N3—C20	1.459 (3)	C18—H18	0.9300
N4—C23	1.406 (3)	C19—H19	0.9300
N4—C28	1.419 (3)	C20—H20A	0.9600
N4—C34	1.450 (3)	C20—H20B	0.9600
C1—C6	1.523 (3)	C20—H20C	0.9600
C1—C2	1.539 (3)	C21—C22	1.462 (3)
C1—H1	0.9800	C21—H21	0.9300
C2—C3	1.520 (3)	C22—C27	1.400 (4)
С2—Н2	0.9800	C22—C23	1.413 (3)
C3—C4	1.523 (4)	C23—C24	1.391 (3)
С3—НЗА	0.9700	C24—C25	1.368 (4)
С3—Н3В	0.9700	C24—H24	0.9300
C4—C5	1.505 (4)	C25—C26	1.386 (4)
C4—H4A	0.9700	С25—Н25	0.9300
C4—H4B	0.9700	C26—C27	1.378 (4)
C5—C6	1.521 (4)	С26—Н26	0.9300
С5—Н5А	0.9700	С27—Н27	0.9300
С5—Н5В	0.9700	C28—C29	1.381 (3)
С6—Н6А	0.9700	C28—C33	1.396 (4)
С6—Н6В	0.9700	C29—C30	1.394 (4)
C7—C8	1.467 (3)	С29—Н29	0.9300
С7—Н7	0.9300	C30—C31	1.362 (5)
C8—C13	1.384 (4)	С30—Н30	0.9300
C8—C9	1.414 (3)	C31—C32	1.379 (5)
C9—C10	1.393 (4)	С31—Н31	0.9300
C10—C11	1.358 (5)	C32—C33	1.368 (4)
С10—Н10	0.9300	С32—Н32	0.9300
C11—C12	1.370 (5)	С33—Н33	0.9300
C11—H11	0.9300	С34—Н34А	0.9600
C12—C13	1.386 (4)	C34—H34B	0.9600
C12—H12	0.9300	C34—H34C	0.9600
N2—Fe1—N1	80.14 (7)	C8—C13—C12	121.2 (3)
N2—Fe1—Cl2	114.98 (5)	C8—C13—H13	119.4
N1—Fe1—Cl2	110.60 (5)	C12—C13—H13	119.4
N2—Fe1—Cl1	110.31 (5)	C15-C14-C19	119.2 (3)
N1—Fe1—Cl1	113.40 (5)	C15-C14-N3	121.7 (3)

Cl2—Fe1—Cl1	120.51 (3)	C19—C14—N3	119.2 (3)
C7—N1—C1	120.27 (18)	C16-C15-C14	120.0 (3)
C7—N1—Fe1	127.20 (15)	C16-C15-H15	120.0
C1—N1—Fe1	111.65 (12)	C14—C15—H15	120.0
C21—N2—C2	119.19 (18)	C17—C16—C15	120.8 (3)
C21—N2—Fe1	128.50 (15)	С17—С16—Н16	119.6
C2—N2—Fe1	111.55 (12)	C15-C16-H16	119.6
C9—N3—C14	120.5 (2)	C16—C17—C18	120.1 (3)
C9—N3—C20	116.9 (2)	С16—С17—Н17	119.9
C14—N3—C20	115.8 (2)	C18—C17—H17	120.0
C23—N4—C28	119.64 (18)	C17—C18—C19	120.3 (4)
C23—N4—C34	119.2 (2)	C17—C18—H18	119.8
C28—N4—C34	118.4 (2)	C19—C18—H18	119.8
N1—C1—C6	115.56 (17)	C18—C19—C14	119.6 (3)
N1—C1—C2	107.62 (16)	С18—С19—Н19	120.2
C6—C1—C2	110.85 (18)	С14—С19—Н19	120.2
N1—C1—H1	107.5	N3—C20—H20A	109.5
C6—C1—H1	107.5	N3—C20—H20B	109.5
C2—C1—H1	107.5	H20A—C20—H20B	109.5
N2—C2—C3	116.49 (17)	N3—C20—H20C	109.5
N2—C2—C1	107.68 (16)	H20A—C20—H20C	109.5
C3—C2—C1	111.54 (17)	H20B-C20-H20C	109.5
N2—C2—H2	106.9	N2—C21—C22	125.3 (2)
C3—C2—H2	106.9	N2—C21—H21	117.4
C1—C2—H2	106.9	C22—C21—H21	117.4
C2—C3—C4	110.92 (19)	C27—C22—C23	118.9 (2)
С2—С3—НЗА	109.5	C27—C22—C21	121.7 (2)
С4—С3—НЗА	109.5	C23—C22—C21	118.9 (2)
С2—С3—Н3В	109.5	C24—C23—N4	122.5 (2)
С4—С3—Н3В	109.5	C24—C23—C22	118.9 (2)
НЗА—СЗ—НЗВ	108.0	N4—C23—C22	118.6 (2)
C5—C4—C3	110.7 (2)	C25—C24—C23	120.6 (2)
C5—C4—H4A	109.5	C25—C24—H24	119.7
C3—C4—H4A	109.5	C23—C24—H24	119.7
C5—C4—H4B	109.5	C24—C25—C26	121.5 (2)
C3—C4—H4B	109.5	С24—С25—Н25	119.3
H4A—C4—H4B	108.1	С26—С25—Н25	119.3
C4—C5—C6	110.7 (2)	C27—C26—C25	118.7 (2)
C4—C5—H5A	109.5	С27—С26—Н26	120.7
С6—С5—Н5А	109.5	C25—C26—H26	120.7
С4—С5—Н5В	109.5	C26—C27—C22	121.3 (2)
С6—С5—Н5В	109.5	С26—С27—Н27	119.3
H5A—C5—H5B	108.1	С22—С27—Н27	119.3
C5—C6—C1	111.74 (19)	C29—C28—C33	118.6 (2)
С5—С6—Н6А	109.3	C29—C28—N4	121.3 (2)
С1—С6—Н6А	109.3	C33—C28—N4	120.1 (2)
С5—С6—Н6В	109.3	C28—C29—C30	120.3 (3)
С1—С6—Н6В	109.3	С28—С29—Н29	119.9
H6A—C6—H6B	107.9	С30—С29—Н29	119.9

N1—C7—C8	124.2 (2)	C31—C30—C29	120.5 (3)
N1—C7—H7	117.9	С31—С30—Н30	119.7
С8—С7—Н7	117.9	С29—С30—Н30	119.7
C13—C8—C9	119.4 (2)	C30—C31—C32	119.3 (3)
C13—C8—C7	120.5 (2)	С30—С31—Н31	120.3
C9—C8—C7	120.0 (2)	С32—С31—Н31	120.3
C10—C9—C8	117.7 (3)	C33—C32—C31	121.1 (3)
C10—C9—N3	122.4 (2)	С33—С32—Н32	119.5
C8—C9—N3	119.9 (2)	С31—С32—Н32	119.5
C11—C10—C9	121.7 (3)	C32—C33—C28	120.2 (3)
C11-C10-H10	119.1	С32—С33—Н33	119.9
С9—С10—Н10	119.1	С28—С33—Н33	119.9
C10-C11-C12	121.1 (3)	N4—C34—H34A	109.5
C10-C11-H11	119.5	N4—C34—H34B	109.5
C12-C11-H11	119.5	H34A—C34—H34B	109.5
C11—C12—C13	118.9 (3)	N4—C34—H34C	109.5
C11—C12—H12	120.6	H34A—C34—H34C	109.5
C13—C12—H12	120.6	H34B—C34—H34C	109.5

